Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Am J Pathol ; 190(9): 1782-1788, 2020 09.
Article in English | MEDLINE | ID: covidwho-726390

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) symptoms, including systemic inflammatory response and multisystem organ failure, are now affecting thousands of infected patients and causing widespread mortality. Coronavirus infection causes tissue damage, which triggers the endoplasmic reticulum stress response and subsequent eicosanoid and cytokine storms. Although proinflammatory eicosanoids, including prostaglandins, thromboxanes, and leukotrienes, are critical mediators of physiological processes, such as inflammation, fever, allergy, and pain, their roles in COVID-19 are poorly characterized. Arachidonic acid-derived epoxyeicosatrienoic acids could alleviate the systemic hyperinflammatory response in COVID-19 infection by modulating endoplasmic reticulum stress and stimulating the resolution of inflammation. Soluble epoxide hydrolase (sEH) inhibitors, which increase endogenous epoxyeicosatrienoic acid levels, exhibit potent anti-inflammatory activity and inhibit various pathologic processes in preclinical disease models, including pulmonary fibrosis, thrombosis, and acute respiratory distress syndrome. Therefore, targeting eicosanoids and sEH could be a novel therapeutic approach in combating COVID-19. In this review, we discuss the predominant role of eicosanoids in regulating the inflammatory cascade and propose the potential application of sEH inhibitors in alleviating COVID-19 symptoms. The host-protective action of omega-3 fatty acid-derived epoxyeicosanoids and specialized proresolving mediators in regulating anti-inflammation and antiviral response is also discussed. Future studies determining the eicosanoid profile in COVID-19 patients or preclinical models are pivotal in providing novel insights into coronavirus-host interaction and inflammation modulation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Betacoronavirus/pathogenicity , COVID-19 , Eicosanoids/pharmacology , Eicosanoids/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Humans , Pandemics , SARS-CoV-2
2.
Cancer Metastasis Rev ; 39(2): 337-340, 2020 06.
Article in English | MEDLINE | ID: covidwho-209469

ABSTRACT

Severe coronavirus disease (COVID-19) is characterized by pulmonary hyper-inflammation and potentially life-threatening "cytokine storms". Controlling the local and systemic inflammatory response in COVID-19 may be as important as anti-viral therapies. Endogenous lipid autacoid mediators, referred to as eicosanoids, play a critical role in the induction of inflammation and pro-inflammatory cytokine production. SARS-CoV-2 may trigger a cell death ("debris")-induced "eicosanoid storm", including prostaglandins and leukotrienes, which in turn initiates a robust inflammatory response. A paradigm shift is emerging in our understanding of the resolution of inflammation as an active biochemical process with the discovery of novel endogenous specialized pro-resolving lipid autacoid mediators (SPMs), such as resolvins. Resolvins and other SPMs stimulate macrophage-mediated clearance of debris and counter pro-inflammatory cytokine production, a process called inflammation resolution. SPMs and their lipid precursors exhibit anti-viral activity at nanogram doses in the setting of influenza without being immunosuppressive. SPMs also promote anti-viral B cell antibodies and lymphocyte activity, highlighting their potential use in the treatment of COVID-19. Soluble epoxide hydrolase (sEH) inhibitors stabilize arachidonic acid-derived epoxyeicosatrienoic acids (EETs), which also stimulate inflammation resolution by promoting the production of pro-resolution mediators, activating anti-inflammatory processes, and preventing the cytokine storm. Both resolvins and EETs also attenuate pathological thrombosis and promote clot removal, which is emerging as a key pathology of COVID-19 infection. Thus, both SPMs and sEH inhibitors may promote the resolution of inflammation in COVID-19, thereby reducing acute respiratory distress syndrome (ARDS) and other life-threatening complications associated with robust viral-induced inflammation. While most COVID-19 clinical trials focus on "anti-viral" and "anti-inflammatory" strategies, stimulating inflammation resolution is a novel host-centric therapeutic avenue. Importantly, SPMs and sEH inhibitors are currently in clinical trials for other inflammatory diseases and could be rapidly translated for the management of COVID-19 via debris clearance and inflammatory cytokine suppression. Here, we discuss using pro-resolution mediators as a potential complement to current anti-viral strategies for COVID-19.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Respiratory Distress Syndrome/therapy , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Betacoronavirus/isolation & purification , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/complications , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokine Release Syndrome/immunology , Cytokines/immunology , Cytokines/metabolism , Eicosanoids/immunology , Eicosanoids/metabolism , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , Respiratory Distress Syndrome/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL